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S1. The Johnson SB distribution 
The Johnson SB distribution (Johnson and Kotz 1994, pg. 34) is a distribution, X ∈ (x, γ + x) which gives 
a standard normal distribution, Z, under the following transformation, 

 .  (S1) 

The parameters have the following restrictions: x and μ are both real numbers, γ > 0, and, by convention, 
σ > 0. The parameters μ and σ are the mean and standard deviation of a normal distribution, ln{(X – ξ )/(γ 
+ ξ – X)} = μ + σZ. The parameters x and γ are the minimum and range of the domain of X, respectively. 
Our use of the SB is to describe temporal fluctuations in the yearly germination fraction, which is bounded 
between the values 0 and 1. Hence, x = 0 and γ = 1 for our purposes, and we define G = (X – x)/γ. 
Rewriting (S1) in terms of EG and G yields 

 , (S2) 

which states that there is a class of distributions G that is normally distributed on the log-odds scale. 
Rearranging (S2) yields the formulation of the Johnson SB distribution used in the main text (4) for G, 

 ,  (S3) 

where G ∈ (0,1). The behavior of G is thus determined entirely by the normal distribution EG, which has 
two parameters μ and σ.  
 
The probability density function for G can be found via transformation of a normally distributed random 
variable EG. First, note that the probability density function of a transformed variable G = h(X) of a 
random variable X is  

 , (S4) 

where fX is the density function for random variable X and h is a monotone function. Equation (S4) is 
common in texts on probability, but we briefly derive it here. First, recognize that a continuously 
differentiable distribution function for a random variable G, FG, is by definition 

 .  (S5) 
By the fundamental theorem of calculus,   
 

   (S6) 

From (S5), it follows that  

   (S7) 

Z = 1
σ
ln X −ξ

γ +ξ − X
⎧
⎨
⎩

⎫
⎬
⎭
− µ

⎡

⎣
⎢

⎤

⎦
⎥

EG ≡ µ +σZ = ln G
1−G

⎛
⎝⎜

⎞
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G = eEG

1+ eEG

fG (g) =
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fX h−1(g)( )

FG (g) = P(G ≤ g) = fG (z)dz−∞
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∫
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FG = d
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= d
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= dX
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P X ≤ h−1(g)( )     by the chain rule
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dG
fX h−1(g)( ).
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The penultimate line follows again from the fundamental theorem of calculus and the final line follows 
from the definition of G = h(X). Using (S7) in (S6) yields (S4). 
 
For the germination distribution G, h is the inverse logit function of EG, where G = h(EG) = 
exp(EG)/(1+exp(EG)). Thus, EG = h–1(G) = ln{G/(1 – G)} and  

   (S8) 

In addition, 

   (S9) 

because EG ~ N( ).  
 
Using expressions (S8) and (S9) in (S4) yields the pdf for G: 

   (S10) 

for g ∈ (0,1). Equation (S10) is the probability density function for the Johnson SB distribution describing 
germination when the underlying environmental variable has mean  and variance . Equation (S10) 
was used to create the density curves in Figure 1 of the main text. 
 
 

S2. Writing correlations between environmental responses as 
differences in θs.  
There are two correlations used in the main text. The first is the between-species correlation in 
environmental responses, . To derive this correlation, first note that  

. Using expressions for EG from Table 1 in the main text, 
the covariance is 

  . (S11) 
We assume X1 is independent of X2 and so Cov(X1, X2) = 0. Furthermore, X1 and X2 are both standard 
normal, meaning Var(X1) = Var(X2) = 1. Thus (S11) simplifies to  
 .  (S12) 
Substituting in the angular definitions for the environmental sensitivities,  and , 
into the term in parentheses in (S12) yields 

  . (S13) 
Now, we use the trigonometric identity  
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= d
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⎨
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,EG2( ) = Cov µEG

+σ EG
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+σ EG
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=σ EG
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 ,  (S14) 
in (S13) to yield 
 .  (S15) 
Now, since , placing (S15) in the definition of a correlation yields our final 
result: 

 .  (S16) 
The same derivation applies to correlations between vigor responses of the two species. 
 
The other correlation of use in the main text is the within-species correlation of germination and vigor 
responses, , our measure of predictive germination. The definitions of EG and 
EV imply that     

  . (S17) 

  
Following the assumptions in the main text, Cov(Xk, Zk) = ρ for k = 1,2, and Cov(Xk, Yl) = 0 for k ≠ l. 
Hence, (S17) simplifies to  

 , (S18) 
where we have substituted in the angular representations of environmental sensitivities in the last line. 
Using the same trigonometric identity (S14), (S18) simplifies to 
 . (S19) 

The definition of a correlation is  and since  

and , the correlation can be written using (S19) as 

 , (S20) 
which is Eqn (10) in the main text. 
 
 

sin(x)sin(y)+ cos(x)cos(y) = cos(x − y)

Cov EG1
,EG2( ) =σ EG

2 cos θG1 −θG2( )
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) = Var(EG2
) =σ EG

2
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)

=
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2( )2
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ej1X1 + ej2X2( ),µEV

+σ EV
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σ EV
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∑
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∑
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σ EV
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σ EV
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)cos(θVj )( )

Cov EGj
,EVj( ) =σ EG

σ EV
ρ cos θGj

−θVj( )
Corr(EGj

,EVj ) = Cov(EGj
,EVj ) / Var(EGj

)Var(EVj ) Var(EGj
) =σ EG

2

Var(EVj ) =σ EV
2
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,EVj( )
Var(EGj
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=
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σ EV
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= ρ cos θGj
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S3. Constructing the environmental responses 
A description of the modeling problem 
Our model includes variable germination and vigor for each species. To investigate potential correlations 
between these variables, we model them as normal on some scale. Normal distributions are chosen 
because it is straightforward to model correlations of normally distributed variables. The normal variables 
are EG = log{G/(1–G)} and EV = log(V), which we term environmental responses. The set of all 
environmental responses E = (EG1, EG2, EV1, EV2)T ~ (μ, Σ) is a 4-d multivariate normal distribution. 
Multivariate normal distributions are completely defined by the vector of means, μ, and the covariance 
matrix, Σ. From Eqns (6)-(7) in the main text, the vector of means is μ = (μEG, μEG, μEV, μEV)T and the 
diagonal elements of Σ (the variances of each marginal distribution of E). 
 
With the means and variances of the multivariate normal specified, all that remains to be specified are the 
off-diagonal elements of Σ, which are the covariances between each of the random variables in E. Instead 
of the covariance matrix, we consider the correlation matrix, R, which has all the same information of the 
covariance matrix when combined with the variances because Σ = DRD, where D = diag(σEG, σEG, σEV, 
σEV) is the diagonal matrix of standard deviations. The correlation matrix, R, is symmetric because 
Corr(U,W) = Corr(W,U) for any random variables U and W and has values of 1 along its diagonal. There 
are 6 unique elements of R for a 4-d multivariate normal (and n(n–1)/2 unique elements for an n-
dimensional multivariate normal). These are  

(i) Corr(EG1,EG2),   (ii) Corr(EG1,EV1),  
(iii) Corr(EG1,EV2),    (iv) Corr(EG2,EV1), 
(v) Corr(EG2,EV2),     and  (vi) Corr(EV1,EV2).  

The goal is to write a model where correlations (i)-(v) change as both species germination responses 
evolve (Corr(EV1,EV2) is fixed by assumption that vigor does not evolve).  
 
Covariance matrices must be positive-definite 
An important consideration when constructing covariance matrices (and correlation matrices) is that all 
elements of the matrices must be internally consistent with one another. Internal consistency is guaranteed 
if the covariance matrix is positive-definite. A matrix R is said to be positive-definite if it satisfies the 
inequality, aTRa > 0, for any real-valued column vector a. Importantly, all the elements of R cannot be 
independently varied; some correlations between variables are constrained given specified correlations 
between other variables. 
 
For an example of a matrix entries that are not internally consistent (and so it not positive-definite), 
consider the slightly simpler problem of 3 normal variables W1, W2, and W3 with nonzero, finite variances. 
Assume W1 and W2 have correlation ρ1 and W2 and W3 also have correlation ρ1. The remaining entry of the 
correlation matrix is the correlation between W1 and W3, i.e., Corr(W1,W3) = x, for –1 ≤ x ≤ 1. The 
correlation matrix RW in this case is  

 .  (S21) 

Might we choose any value of x for this matrix? No, because some values of x are not consistent with the 
prior assumptions that W2 is correlated with W1 and W3. To find what values of x allow RW to be positive 
semi-definite, we use Sylvester’s criterion, which states that a real, symmetric matrix is positive semi-
definite if all leading principal minors are nonnegative (Gilbert 1991). In other words, the determinant of 
all upper left sub square matrices of RW are nonnegative and that the full matrix RW has a nonnegative 
determinant.  
 

N

RW =
1 ρ1 ρ1
ρ1 1 x
ρ1 x 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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Applying Sylvester’s Criterion to RW reveals that RW is positive-definite if x2 – 2xρ1 ≤ 1 – 2ρ1
2. Clearly, 

the value of ρ1 constrains the feasible values of x. For example, when ρ1 = 1, the condition on x is (x – 1)2 
≤ 0, which can only be satisfied for x = 1. Similarly, when ρ1 = –1, the condition on x is (x + 1)2 ≤ 0, 
which again is only satisfied for x = –1. In fact, the value of x can only be independently chosen when ρ1 
= 0, in which case RW is positive definite if x2 ≤ 1, which is satisfied for all feasible values of x, i.e., for 
any feasible correlation. 
 
This example shows that arbitrarily choosing some correlation values of R constrains other possible 
correlations in R and may fix the values of some correlations. One could keep track of these constraints, 
but it would be analytically quite involved for the 4 environmental responses we have in our model. 
 
An approach to create any positive-definite matrix 
Instead of specifying the correlations and ensuring that the covariance matrix is positive-definite, an 
alternative approach is to construct a self-consistent multivariate normal distribution from a number of 
independent standard normal distributions. Johnson and Kotz (1972b, Chapter 35) shows that any 
multivariate normal distribution, , where  U = (U1, U2, U3, …, Un)T, can be constructed 
from n independent standard normal variables, X ~ , according to the following linear 
transformation 
 ,  (S22) 
where μU is a column vector of means, X = (X1, X2, X3, and X4)T is a column vector of i.i.d. standard 
normal random variables, and H is an n x n matrix for which HHT = ΣU. Eqn (1.2) states that any n-
dimensional multivariate random variable, with any arbitrary covariance matrix, can be constructed from 
a linear combination of n independent standard normal variables. In fact, n independent standard normal 
variables are necessary and sufficient to generate U. Use fewer than four and one marginal distribution of 
U is statistically identical to another. Use more than four and the model is overdetermined.  
 
To describe environmental responses in the model, we have taken the approach of constructing the 
multivariate distribution of environmental responses by way of a linear combination of independent 
random variables. Since we are interested in the correlation structure, we need to specify the components 
of H that do not depend on the variances. We do this by writing H = DK. The matrix K contains all the 
information present in the correlation matrix, which can be seen by substituting the identity Σ = HHT  into 
the definition for the correlation matrix, R = D–1ΣD–1, which yields 

  . (S23) 

Hence, E can be written as  
 ,  (S24) 
where μ contains the means of the marginal distributions, D contains the standard deviations of the 
marginal distributions, K contains constants determining the correlation structure, and X is a column 
vector of 4 i.i.d. standard normal random variables. For our model,   

    ,       (S25) 

U ~ N µU ,ΣU( )
N (0,In )

U = µU +HX

R = D−1HHTD−1

= D−1(DK)(DK)TD−1

= (D−1D)(KKT )(DD−1)
= KKT

E = µ +DKX

K =

e11 e12 0 0
e21 e22 0 0

v11ρ v12ρ v21 1− ρ2 v12 1− ρ2

v21ρ v22ρ v21 1− ρ2 v22 1− ρ2

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟
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which can be written much more compactly in the block matrix form 

 ,  (S26) 

with e being the 2x2 matrix with elements eij and v being the 2x2 matrix with elements vij. The correlation 
matrix is then 

 .  (S27) 

An important note here is one extra step is required in order to derive the expressions for environmental 
responses in the main text. The step is to write  and . Using these 
two definitions for Z1 and Z2 in Eqn (7) of the main text yields the system of equations (1.3) above.  
 
As R is a correlation matrix, the diagonal elements are 1, which implies that ei1

2
 + ei2

2 = 1 and vi1
2

 + vi2
2 = 

1 for i = 1,2. Since we have two parameters to describe a single value, one element in each row of e and v 
is redundant. In effect, each matrix can be described by 2 values, one for each row. The choice of the 
polar coordinate representation works well in this case. Now, we have 4 parameters to describe the 
elements of e and v (θG1, θG2, θV1, and θV2) and 5 parameters overall (θG1, θG2, θV1, θV2, and ρ) to describe 6 
correlations.  
 
Tactically speaking, the approach here ensures that the model is internally consistent for all parameter 
values and lets the covariances emerge as the parameters change. Furthermore, the parameters here are 
meaningful in terms of different components of the multivariate distribution. The parameters μ and σ 
control the means and variances, respectively, of the marginals of E (and the median and spread of G and 
V). The θ parameters control the correlations between species and within species, once coupled with ρ. 
 
What if there are more (or fewer) than 2 environments affecting germination and vigor? 
We have described the random variables X and Z as representing unspecified environmental factors that 
affect germination and plant size, respectively. Describing X and Z as environmental factors gives some 
biological meaning to the idea of sensitivities evolving. However, one may wonder whether 2 is the 
appropriate number of environmental factors. Biologically speaking, it seems unlikely that germination 
responds to more than just two environmental factors. On the other hand, one may ask why not do the 
same but with one environmental factor, which is simpler, if the same results could be derived.  
 
Johnson and Kotz (1972) provides us with the answer to both in the demonstration that any n-dimensional 
multivariate normal can be constructed from n i.i.d. standard normal random variables. Adding more 
variables would lead to redundancy in the description of the system. Having fewer would limit the types 
of covariances that can be described by the model. Furthermore, we might want to assume that the 
environmental variables are correlated in some other way, perhaps by assuming that X1, X2, X3, and X4 are 
correlated in some way. In doing so, we could always rewrite such correlated variables as a linear 
function transformation of 4 i.i.d. random variables. As such, any correlated set of variables can be 
described by the model we have, which is sufficient to describe all possible covariances between 4 
multivariate normal variables. 
 
Finally, we might consider only a single environmental variable to be important. In this case, our model 
again is sufficient to describe this situation. Imagine that the germination response is a reaction norm to 
temperature at the time of rainfall, T ~ (μT, σ2

T), such that we can describe the germination response 
with a linear regression against temperature. In that case, Êj(t)  = βj

0 + βjT(t) where βj
0 and βj are 

K =
e 0
ρv 1− ρ2v

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

R = KKT =
eeT ρevT

ρveT vvT
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Z1 = ρX1 + 1− ρ2X3 Z2 = ρX2 + 1− ρ2X4

N
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regression coefficients. For two species, the environmental responses follow a bivariate normal 
distribution (Ê1, Ê2) with means E[Êj] = βj

0 + βjμT and covariance matrix, 

. 

As before, we can always rewrite this distribution as a linear combination of two independent standard 
normal random variables, according to (S22). Note however in this case that the correlations between 
species, Corr(Ê1, Ê2) is limited to take values ±1 depending on whether β1 and β2 have the same sign. This 
temperature model is thus more limited than the one we use. 
 
How do the multiple transformations of X affect the resulting distributions of G and V? 
A reasonable question is whether information is lost in the multiple transformations from X to G and V. 
The process for generating G and V is as follows 

1. Start with 4 independent standard normal random variables, X = (X1, X2, X3, X4). 
2. Construct E with a linear transformation (S24). 
3. Transform the first two marginals of E (EG1, EG2) by applying the inverse log-odds 

transformation (eqn 4 of the main text, sometimes called the logistic transform) to create G1 
and G2.  

4. Transform the second two marginals of E (EV1, EV2) by taking the exponential of the 
marginals (eqn 5 of the main text) to create V1 and V2. 

 
The result is that we have two germination distributions, G1 and G2, that are each SB and two vigor 
distributions, V1 and V2, that are each log normal. The first two central moments of the marginals Vj are 
E[Vj] = exp(μEV + σ2

EV/2) and Var(Vj) = [exp(σ2
EV) – 1]exp(2μEV + σ2

EV) and are completely determined by 
means and variances of EV.  
 
Johnson (1994) gives some important relationships of the SB distribution that we use to model G, although 
they give no closed form expressions for statistical properties of G. We can, however, have good 
approximations to the first two central moments of G. Approximating G to third order about G* = 
exp(μEG)/[1+exp(μEG)], its median, and taking expectations yields 

    , 

where y = o(σ) is used in the sense that y/σ → 0 as σ → 0. We can also approximate G to second order 
about its median and take the variance to find that  
    . 
 
These properties would be no different from constructing any log-normal or SB distributions. And you can 
see that the first two moments are described by parameters which are unrelated to any evolving characters 
in the model. However, we need a way to correlate the different environmental responses to have 
correlations between all combinations of G1, G2, V1, and V2. That is where the transformation from X to E 
is helpful because there is no obvious way to correlate Gs and Vs without such an underlying structure. 

S4. Derivation of the selection gradient under the assumption of 
small environmental variance. 
To find an expression for the growth rate, we follow the general approach of Chesson (1994) and write 
the growth rate, g(EG, EV, C) ≡ r, as a function of germination on the log-odds scale, vigor on the log-
scale, and competition on the log scale. Thus, the growth rate of a species j can be written as 
 ,  (S28) 

Σ Ê =σ T
2 β1

2 β1β2
β1β2 β2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

E[G] = G* 1+ 1−G*( ) 12 −G
*⎛

⎝⎜
⎞
⎠⎟σ EG

2⎡
⎣⎢

⎤
⎦⎥
+ o(σ 3)

Var(G) = G*2 (1−G*)2σ EG
2 + o(σ 2 )

gj EGj
,EVj ,C( ) = ln s + yje

EGj +EVj −C{ }− ln 1+ eEGj{ }



 9 

where  and  are given by equations (6) and (8), respectively, in the main text, and 
. The approach follows a Taylor expansion in three variables around an 

equilibrium point, i.e., a point  for which . The expansion is limited to 

terms O(σ2) where σ is a parameter representing the variation in  and  and is assumed small 
(detailed below).  
 

Following Holt and Chesson (2014), we choose , where  is the solution to 

, which in this model formulation is  

 . (S29) 

In (S29),  and  are the values of G and V evaluated for the mean 
environmental values,  and , respectively. These are the same for both species as the means of the 

environmental responses are assumed the same for both species. We choose , the mean of 

the vigor responses. The choices of EV
* and C* fix the value of  to be the solution to , 

which from (S28) is 

 . (S30) 

Using the fixed point , the Taylor expansion of g to second order terms is 

   (S31) 
where ΔX = X – X* and g(i,j,k)* is the i + j + kth partial derivative of g with respect to the associated 
variables (EG, EV, C) evaluated at the equilibrium point . Expressions for the derivatives are 

given in Table S1, which are all written in terms of a species’ sensitivity to competition, , 

where . 
 
Table S1. Expressions for the coefficients of the Taylor approximation (D4). Note that βj = 1 – s(1 – 
exp(Ej

*)/(1 + exp(Ej
*)). 

First Order 
Derivatives Expression Second Order 

Derivatives Expression Cross Partial 
Derivatives Expression 

g(1,0,0)* βj – Gj
* g(2,0,0)* (1 – s)(1 – βj) g(1,1,0)* βj(1 – βj) 

g(0,1,0)* βj g(0,2,0)* βj(1 – βj) g(1,0,1)* –βj(1 – βj) 
g(0,0,1)* –βj g(0,0,2)* βj(1 – βj) g(0,1,1)* –βj(1 – βj) 

 
To control the approximation, we introduce the critical assumption of small environmental fluctuations by 
writing   

EGj
EVj

C = ln 1+αG1V1N1 +αG2V2N2{ }
EGj

* ,EVj
* ,C*( ) gj EGj

* ,EVj
* ,C*( ) = 0
EG EV

C* = 1
2
Ci
* +Cj

*( ) Ci
*

gj EG ,EV ,Cj
*( ) = 0

Cj
* = ln

yjG
*V *

1− s 1−G*( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

G* = exp(EG ) / 1+ exp(EG )( ) V * = exp(EV )

EGj
EVj

EVj
* = EV

* = µEV

EGj

* gj EGj

* ,EV
* ,C*( )

EGj

* = ln 1− s
yje

EV
* −C* −1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

(EGj

* ,EV
* ,C*)

rj = g
(1,0,0)*ΔEGj

+ g(0,1,0)*ΔEVj + g
(0,0,1)*ΔC +

+ 1
2
g(2,0,0)*ΔEGj

2 + 1
2
g(0,2,0)*ΔEVj

2 + 1
2
g(0,0,2)*ΔC 2

+g(1,1,0)*ΔEGj
ΔEVj + g

(1,0,1)*ΔEGj
ΔC + g(0,1,1)*ΔEVjΔC,

EGj

* ,EV
* ,C*( )

β j = 1− s(1−Gj
*)

Gj
* = exp(EGj

* ) / 1+ exp(EGj

* )( )
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   (S32)  

for all j where y = O(σ) is defined to mean |y| < Kσ for some constant K. The assumptions in (S32) mean 
that fluctuations in the environmental parameters about their equilibrium values are bounded within a 
range of relatively small values. While this may appear restrictive, insights from the small variance 
approximation prove useful in understanding results from much larger fluctuations. Further, we assume 
that  and . It follows these assumptions and (S32) that 

 and , where y = o(σ) means y/σ → 0 as σ → 0. 
Chesson (1994) demonstrates that fluctuations in C are likewise bounded for this model, such that C – C* 
= O(σ) and E(C – C*) = O(σ2), which also means that E[(C – C*)2] = Var(C) + o(σ2). 
 
Taking expectation of expression (S31), substituting in the expressions in Table S1, and following the 
small variance assumptions in the previous paragraph, expression (S31) can now be written as 

   (S33) 

where ≈ means the approximation omits all terms o(σ2). Note that the term E(ΔEV) has been omitted 
because E(ΔEV) = E(EV) – EV

* = E(EV) – μEV = 0 and that the species subscripts for Var(EG) and Var(EV) 
have been dropped in accordance with the assumptions in the main text that species have equal variance. 
 
Selection 
The approximation for fitness (S33), once applied to an invader, gives the invasion rate of a mutant 
phenotype . Note however, the value C, which takes on different meanings in different contexts. For a 
mutant phenotype, it is assumed to be rare enough so as not to contribute to C. Thus, C only includes 
competition from the resident phenotype of the species when in allopatry and of both species when in 
sympatry. Given that the mutant phenotype does not affect C, mutant long-term growth rates can be 
approximated as 

  (S34) 

where again C = ln{1 + αG1V1N1 + αG2V2N2} and  is the environmental response of the invader. 

 
Differentiating (S34) with respect to the invader trait  yields the selection differential. The trait  
only affects patterns of variation in G and so has no effect on mean or variance terms. Thus, the derivative 
of each of the first 5 terms of (S34) w.r.t.  are zero. Further, since a mutant phenotype does not 
contribute to C, = 0. Thus, the derivative of (S34) is  

 . (S35) 

Defining γj ≡ βj(1 – βj) yields expression (12) in the main text. 

ΔEGj
≡ EGj

− EGj

* =O(σ )

ΔEGj
≡ EVj − EV

* =O(σ ),

E(ΔEGj
) =O(σ 2 ) E(ΔEVj ) =O(σ

2 )

E(ΔEGj

2 ) = Var(EGj
)+ o(σ 2 ) E(ΔEVj

2 ) = Var(EVj )+ o(σ
2 )

rj ≈ β j −Gj
*( )E(ΔEGj

)− β jE(ΔC)

+ 1
2
(1− s)(1− β j )Var(EG )+

1
2
β j (1− β j ) Var(EV )+Var(C)[ ]

+β j (1− β j ) Cov EGj
,EVj( )−Cov EGj

,C( )−Cov EVj ,C( )⎡
⎣

⎤
⎦,

′θGj

′rj ≈ β j −Gj
*( )E(Δ ′EGj

)− β jE(ΔC)

+ 1
2
(1− s)(1− β j )Var(EG )+

1
2
β j (1− β j ) Var(EV )+Var(C)[ ]

+β j (1− β j ) Cov ′EGj
,EVj( )−Cov ′EGj

,C( )−Cov EVj ,C( )⎡
⎣

⎤
⎦,

′EGj

′θGj
′θGj

′θGj

dCov(EVj ,C) / d ′θGj

d ′rj
d ′θGj

≈ β j (1− β j )
d

d ′θGj

Cov ′EGj
,EVj( )− d

d ′θGj

Cov ′EGj
,C( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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S5. Results of evolution using the selection gradient under special 
cases  
In section S4, we derived the result that the selection gradient can be approximated by the expression  

   (S36) 

where  is the environmental response of the mutant phenotype of species j. Result (S36) can be used 
to predict evolutionary dynamics in some special cases. The cases here include (i) the single species case, 
(ii) the case of large variation of germination relative to vigor, i.e., σEV/σEG → 0, (iii) the inverse case of 
large vigor variation relative to germination, i.e., σEG/σEV → 0, and (iv) the case of no cue, i.e., ρ = 0. 
 
The first term in (S36) can be expressed exactly (eqn 13 of the main text). However, the second term does 
not have an exact, closed form expression. In each of the special cases, we approximate the Cov(E,C) 
term in (S33) for “small” environmental fluctuations.  
 
The single species case 
In the single species case, we drop the species subscripts and note that C is  
 .  (S37) 
We cannot derive a closed form expression for Cov(E,C), but instead approximate it using the linear 
approximation for competition, C ≈ C* + ∂C/∂EG(EG – EG

*) + ∂C/∂EV(EV – EV
*), which leads to the 

following expression for Cov(E,C): 

   (S38) 

where p* = E[∂C/∂EV] evaluated at equilibrium EG
*, EV

*. The value p* is bounded between 0 and 1, 
approaching 1 in the limit of large population biomass and 0 in the limit of zero biomass. Now, the 
derivative of CovEC with respect to the invader trait, θ′G, evaluated at the resident value, θG, is 

 ,  (S39) 

where we have taken that sin(θ′G – θG)|θG′ = θG = sin(0) = 0 and so it is absent in the final line of (S39). In 
the single-species case, intraspecific competition is not appreciably different for mutants and residents 
and so it has not affect on selection. This property holds for any model where competition is maximized 
for species with the same trait value and mutation are small in effect.  
 
The derivative of Cov(EG,EV) is  

d ′rj
d ′θGj

≈ γ j
d

d ′θGj

Cov ′EGj
,EVj( )− d

d ′θGj

Cov ′EGj
,C( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

′EGj

C(t) = ln 1+αG(t)V (t)N(t){ }

Cov ′EG ,C( ) ≈ cov ′EG , p
* EG 1−G

*( )+ EV⎡⎣ ⎤⎦( )
= p*σ EG

2 1−G*( )corr ′EG ,EG( )+ σ EV

σ EG

corr ′EG ,EV( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= p*σ EG
2 1−G*( )cos ′θG −θG( )+ σ EV

σ EG

ρcos ′θG −θV( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

d
d ′θG

Cov ′EG ,C( )
′θG=θG

≈ p*σ EG
2 1−G*( ) d

d ′θG
cos ′θG −θG( )+ σ EV

σ EG

ρ d
d ′θG

cos ′θG −θV( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

′θG=θG

= − p*σ EG
2 1−G*( )sin ′θG −θG( )+ σ EV

σ EG

ρ sin ′θG −θV( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ′θG=θG

= − p*σ EG
σ EV

ρ sin θG −θV( )
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   (S40) 

Placing expressions (S39) and (S40) in (S36) yields an expression for the selection gradient, 

 . (S41) 

 
Solutions to the selection gradient are candidate evolutionary equilibria, which may be attracting or 
repelling. The sine function has infinitely many solutions that are integer multiples of π. However, given 
the restriction on phenotype space that –π/2 ≤ θG ≤ π/2 and –π/2 ≤ θV ≤ π/2, there is only one solution to 
equation (S38), θG = θV except in the limiting case that θV = ±π/2, in which case there are two solutions, 
θG = ±π/2. The solution θG = θV corresponds to the germination phenotype that maximizes predictive 
germination of the species. In the limiting case where θV = ±π/2, the solution θG = θV also maximizes 
predictive germination at Corr(EG, EV) = ρ, but the solution θG = –θV corresponds to minimizing predictive 
germination at Corr(EG, EV) = 0.  
 
Stability of these equilibria are given by the sign of the (S41) above and below each equilibrium point. 
The terms γ, 1 – p*, , , and ρ are positive. Hence, the sign of (S41) is given by the sign of –sin(θG 
– θV). Take first the case of –π/2 < θV < π/2. For all values of θG < θV, (S41) is positive. For all values of 
θG > θV, (S41) is negative. Hence, the equilibrium θG = θV is globally attractive. Now for special case of θV 
= ±π/2, the solution θG = θV is a local attractor according to the argument above. However, this is not a 
global attractor because the solution θG ∓ π/2 is an equilibrium, albeit a repellor. To see how it is a 
repellor, consider the derivative of (S41), which is proportional to –cos(θG – θV). This derivative at the 
solutions θG ∓ π/2 for θV ± π/2 is –cos(±π) = 1, indicating an unstable equilibrium.  
 
Large germination variation relative to vigor variation with equal vigor 
In the second case, we consider large variation in germination relative to vigor, i.e., σEV/σEG → 0. Without 
loss of generality, we evaluate selection for species 1 and then note that it is straightforward to exchange 
subscripts to derive selection on species 2.  
 
Here it is valuable to write C explicitly as functions of the rescaled environmental variables:  

 . (S42) 

Just as in the single species case, there is no exact expression for CovEC, and so we use the linear 
approximation for C,  
 , (S43) 
where pj

* = E[∂C/∂EVj] evaluated at EGj
* and EV

* and 0 ≤ pj
* ≤ 1 for j = 1,2. Placing (S43) in for C in 

Cov(E′G1, C) yields 

   (S44) 

This covariance can be rewritten as 

   (S45) 

d
d ′θG

cov ′EG ,EV( )
′θG=θG

≈σ EG
σ EV

ρ d
d ′θG

cos ′θG −θV( )
′θG=θG

= −σ EG
σ EV

ρ sin θG −θV( ).

d ′r
d ′θG ′θG=θG

≈ −γ 1− p*( )σ EG
σ EV

ρ sin θG −θV( )

σ EG
σ EV

C = ln 1+αN1
eEG1+EV1

1+ eEG1
+αN2

eEG2 +EV 2

1+ eEG 2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

C ≈C* + p1
* 1−G1

*( ) EG1
− EG1

*( )+ EV1 − EV1
*( )⎡⎣ ⎤⎦ + p2

* 1−G2
*( ) EG2

− EG2
*( )+ EV2 − EV2

*( )⎡⎣ ⎤⎦

Cov ′EG1
,C( ) ≈Cov ′EG1

, p1
* 1−G1

*( )EG1
+ EV1⎡⎣ ⎤⎦ + p2

* 1−G2
*( )EG2

+ EV2⎡⎣ ⎤⎦( )
= p1

* 1−G1
*( )Cov ′EG1

,EG1
+ EV1( )⎡⎣ ⎤⎦ + p2

* 1−G2
*( )Cov ′EG1

,EG2
+ EV2( )⎡⎣ ⎤⎦.

Cov ′EG1
,C( ) =σ EG

2

1−G1
*( ) p1*Corr ′EG1

,EG1( )+ 1−G2
*( ) p2*Corr ′EG1

,EG2( )⎡⎣ ⎤⎦

+
σ EV

σ EG

p1
*Corr ′EG1

,EV1( )+ p2*Corr ′EG1
,EV2( )⎡⎣ ⎤⎦

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

.
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Now using the last line of (S45) and the equation  in the selection 

gradient (S36) for species 1 yields: 

   (S46) 

Upon taking the limit as , (S46) reduces to  

 , (S47) 

which includes only the effects of germination on seedling competition. When the model only includes 
the component of selection reflecting competition, trait evolution maximizes trait divergence.  
 
To show that maximum trait divergence results, we rewrite (S47) explicitly in terms of the germination 
trait, θG, and the vigor trait, θV. Replacing the covariance terms with their trait representations yields 

 .  (S48) 

The derivative dcos(x – y)/dx = –sin(x – y). Hence, (S48) can be rewritten as  

 .  (S49) 

Following the assumptions of adaptive dynamics, we evaluate (S49) at the resident trait value, , 

which means that . Hence, (S49) simplifies to 

 . (S50) 

The selection gradient given by equation (S50) has three solutions,  and  = ±π. Again, all 
parameters γ1, (1 – G2

*), , and  are positive and so the sign of (S50) is determined by the sign of 
. The solution  is unstable because (S50) is negative for and positive for 

, both of which increase differences in θs between species. These differences between species are 
increased until either solution ( ) is reached, both of which are stable. This is the 
characteristic of classical character displacement but for temporal niche partitioning (see Abrams et al 
2013) and accurately predicts simulation results of greater evolved differences between species in their 
germination traits with decreasing  at fixed  (figs 4a,c). 
 
The analysis is based only on the invasion rates of mutant relative to resident. However, it is not 
guaranteed that all phenotype values as resident have positive population densities, which is to say that 
they coexist with the competitor. As shown in section S6, the storage effect promoting coexistence in this 
case is monotonically decreasing in corr(EG1,EG2). Since corr(EG1,EG2) is a monotonically decreasing 
function of , eqns (S56) – (S60) show that both species’ invader growth rates also increase with 

. This means that, if species can coexist for some initial trait difference, then they will also 
coexist as selection proceeds, since both species invasions rates increase with increasing  

Cov EG1
,EV1( ) =σ EG

2 σ EV

σ EG

Corr EG1
,EV1( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

d ′r1
d ′θG1

≈ γ 1
d
d ′θG1

Cov ′EG1
,EV1( )−Cov ′EG1

,C( )⎡⎣ ⎤⎦

= γ 1σ EG
2 d
d ′θG1

σ EV

σ EG

Corr ′EG1
,EV1( )− p1*Corr ′EG1

,EV1( )− p2*Corr ′EG1
,EV2( ){ }

− 1−G1
*( ) p1* Corr ′EG1

,EG1( )+ 1−G2
*( ) p2* Corr ′EG1

,EG2( )⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

σ EV
/σ EG

→ 0
d ′r1
d ′θG1

≈ −γ 1σ EG
2 d
d ′θG1

1−G1
*( ) p1* Corr ′EG1

,EG1( )+ 1−G2
*( ) p2* Corr ′EG1

,EG2( )⎡⎣ ⎤⎦

d ′r1
d ′θG1

≈ −γ 1σ EG
2 d
d ′θG1

1−G1
*( ) p1* cos ′θG1 −θG1( )+ 1−G2

*( ) p2* cos ′θG1 −θG2( )⎡⎣ ⎤⎦

d ′r1
d ′θG1

≈ γ 1σ EG
2 d
d ′θG1

1−G1
*( ) p1* sin ′θG1 −θG1( )+ 1−G2

*( ) p2* sin ′θG1 −θG2( )⎡⎣ ⎤⎦

′θG1 = θG1
sin ′θG1 −θG1( ) = sin θG1 −θG1( ) = sin 0( ) = 0

d ′r1
d ′θG1 ′θG1=θG1

≈ γ 1σ EG
2 1−G2

*( ) p2* sin θG1 −θG2( )
θG1 = θG2 θG1 −θG2

p2
* σ EG

2

sin(θG1 −θG2 ) θG1 = θG2 θG1 <θG2
θG1 >θG2

θG1 −θG2 = ±π

σ EV
σ EG

|θG1 −θG2 |
|θG1 −θG2 |

|θG1 −θG2 |
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caused by selection. However, if mutual invasibility is not satisfied for initial trait differences, then the 
selection gradient given by expression (S50) does not apply because p̅i

* = 0 for the species with . 
Selection in this case simplifies to the single species case considered in section S5 “The single species 
case.” 
 
Large vigor variation relative to germination variation and equal vigor  
Here, we assume that species have the same vigor responses, in which case V1(t) = V2(t) = V(t) for all t. To 
investigate this case, we rewrite the selection gradient in (S46) as 

  (S51) 

where the subscripts of EV are dropped because the two species have identical vigor responses. In the limit 
as , then the selection gradient (S51) simplifies to  

 . (S52) 

Equation (S52) is nearly identical to the long-term growth rate for an invading type in the single species 
case (S41), except that now the term (1 – p*) is replaced with a measure of the amount to which 
competition from both species reduces selection for vigor, (1 – p̅1

* – p̅2
*). The conclusions from the single 

species case apply in this case because both (1 – p*) and (1 – p̅1
* – p̅2

*) are bounded between 0 and 1. To 
see why, note that the sum  p̅1

* + p̅2
* can be written as 

 ,  (S53) 

and so is bounded above by 1. As shown in section S5 “The single species case,” selection in the single 
species case favors maximization of the correlation between germination and vigor, i.e., |θG1 – θV| → 0. 
Here, the same conclusion applies. However, since both species have identical vigor responses, evolution 
leads to identical germination responses of the species as well, i.e., |θG1 – θG2| → 0. This result predicts the 
trend of smaller difference in germination traits with increasing from simulations (figs 4a,c). 
 
Uncorrelated germination and vigor (ρ = 0).  
This case is the simplest to investigate. Regardless of the species’ trait values, Cov(EG,EV) = 0 when ρ = 
0. Hence, the density-independent component of selection is absent from the selection gradient. 
Furthermore, the correlation between EG and EV in the competition term is zero. This means the selection 
gradient is identical to previous case considered “Large germination variation relative to vigor variation 
with equal vigor.” In that section, species with initial trait difference |θG1 – θG2| that satisfies mutual 
invasibility diverge under selection. This result accurately predicts the simulation results in figs 4c and 6a 
that maximum divergence occurs when ρ is small, regardless of other parameter values, even under large 
environmental variation (  for simulations in figs 4 and 6).  
 

S6. Deriving and quantifying species coexistence mechanisms  
Deriving coexistence mechanisms 
To identify mechanisms affecting coexistence of two species, we follow the general partitioning method 
of the low-density, long-term growth rate of a species as outlined in Chesson (1994). The approximation 

ri / βi < 0

d ′r1
d ′θG1

≈ γ 1σ EV
σ EG

⋅ d
d ′θG1

1− p1
* − p2

*( )Corr ′EG1
,EV( )−⎡⎣

σ EG

σ EV

1−G1
*( ) p1* Corr ′EG1

,EG1( )+ 1−Gj
*( ) p2* Corr ′EG1

,EG2( )⎡⎣ ⎤⎦
⎤

⎦
⎥
⎥

σ EG
/σ EV

→ 0
d ′ri
d ′θG1

≈ γ i 1− p1
* − p2

*( )σ EV
σ EG

ρ d
d ′θG1

cos ′θG1 −θV( )
= −γ i 1− p1

* − p2
*( )σ EV

σ EG
ρ sin ′θG1 −θV( )

p1
* + p2

* =
α N1G1V1 + N2G2V2( )
1+α N1G1V1 + N2G2V2( )

σ EV

σ EG
=σ EV

= 1
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(S33) for the low-density growth rate can be used in an invasion analysis, which we use here to determine 
species coexistence in terms of stochastic boundedness (ala Chesson and Ellner 1989 and Schreiber et al 
2011). One species, termed the invader and labelled with subscript i, is assumed to be at zero density and 
grows in the presence of a resident, with dynamics given by its stationary population fluctuations and 
labelled with subscript k. Operationally, this is done by removing the influence of the invader from C but 
retaining the effects of the resident. Following previous notation, C{–i} designates competition with 
species i set to zero density, which means that C{–i} = ln{1 + αGkVkNk}.  
 
In section S4, the long-term growth rate of a species i at low density, , is derived and given in equation 
(S33): 

  (S54) 
 
To determine mechanisms of coexistence between species, comparisons of the components of long-term 
growth between species uncover ways in which species differ that allow for or undermine coexistence. 
Chesson (2018) reviews the necessity for scaling components of growth rates by factors related to species 
life history speed. The scaling factor in the annual plant model here is βj = 1 – s(1 – Gj

*) = 1 – s(1 + 
exp(EGj

*))–1, which represents the fraction of seed in the seed bank at the beginning of the season that is 
lost prior to new seed entering the seed bank. This quantity is the average fraction of the population that 
turns over across years. Since s is assumed to be the same between species, differences between species in 
βj are determined by differences in , (S29), which are caused by species differences in y. 
 
We use these scaling factors to compare components of the growth rates of resident and invader species. 
Since the resident long-term growth rate is assumed to satisfy , the invader long-term growth rate 
can be written as 

 .  (S55) 

Following Holt and Chesson (2014), to first order, . Therefore, we 
substitute  for  in (S54) and use (S54) in (S55) to yield 

 , (S56) 

where 

   (S57) 

 

   (S58) 

 
   (S59) 

 

ri

ri ≈ βi −Gi
*( )E(ΔEGi

)− βiE(ΔC
{− i} )

+ 1
2
(1− s)(1− βi )Var(EG )+

1
2
βi (1− βi ) Var(EV )+Var(C

{− i} )⎡⎣ ⎤⎦

+βi (1− βi ) Cov EGi
,EVi( )−Cov EGi

,C{− i}( )−Cov EVi ,C
{− i}( )⎡⎣ ⎤⎦.

EGj

*

rk = 0

ri
βi

= ri
βi

− rk
βk

(βi −Gi
*)[E(EGi

)− EGi
* ]− βi (Ci

* −C*) ≈ 0

βi (Ci
* −C*) (βi −Gi

*)E(ΔEGi
)

ri
βi

≈ κ i −κ k( )+ ΔJi + ΔIGi + ΔIVi

κ i −κ k = ln yi − ln yk +
1
2

βk − βi( ) (1− s)
βiβk

Var(EG )+Var(EV )
⎡

⎣
⎢

⎤

⎦
⎥

+ γ i

βi

Cov EGi
,EVi( )− γ k

βk

Cov EGk
,EVk( )

ΔJi =
1
2

βi − βk( )Var C{− i}( )

ΔIGi =
γ k

βk

Cov EGk
,C{− i}( )− γ i

βi

Cov EGi
,C{− i}( )
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  . (S60) 

Expression (S56) shows that the invasion rate of a species can be written as a sum of four components, 
given in expression (S57) – (S60). Expression (S57) represents species i’s average fitness advantage over 
its competitor. If positive, species i excludes species k in the scenario of no coexistence (Chesson 2018). 
In the absence of any coexistence mechanisms, the species with larger κ excludes the other. (S58) gives 
an expression for the relative nonlinearity coexistence mechanism, which is traditionally denoted by –ΔN, 
but modified here to more directly demonstrate the potential for it to boost the recovery rate of species. 
Furthermore, we use J to represent the influence of Jensen’s Inequality via the nonlinear averaging that 
relative nonlinearity quantifies. (S59) gives an expression for the storage effect coexistence mechanism 
from germination variation and (S60) gives an expression for the storage effect coexistence mechanism 
from vigor variation. Storage effects stabilize competition between species when environmental responses 
between species are less than correlated. 
 
The main text considers three scenarios. In the first, species have the same seed yield (y1 = y2 = y) and 
identical vigor traits, i.e., , which means . Since species have the same y, β1 = β2 
= β. Therefore, γ1 = γ2 = γ and species average fitness difference is  . 
Hence, species only differ in average fitness if based on differences in predictive germination. The only 
stabilizing mechanisms in this case are storage effects from germination (ΔIG). Identical y and identical EV 
for both species mean that ΔJ = 0 and ΔIV = 0, respectively.  
 
The main text also considers the case of identical vigor responses but unequal seed yield, y1 ≠ y2. Species 
average fitness inequality in this case is  

 .  (S61) 

Both predictive germination and differences in seed yield contribute to average differences between 
species. Furthermore, the storage effect mechanism from vigor has asymmetrical effects between species. 
Since γk/βk – γi/βi = (1 – βk) – (1 – βi) = βi – βk, the storage effect from vigor can be written as 
 . (S62) 
Note the similar structure of (S62) to (S58). Like relative nonlinearity, ΔIV is asymmetrical between 
species in this case and so facilitates invasion of one species and disadvantages another. This can be seen 
from (S62) because the sign of Cov(EV, C) > 0 regardless of the identity of the invading species and 
because the sign of βi – βj changes with species. The species with larger β relatively benefits from ΔIV. 
The species with larger y has smaller β meaning that the competitive dominant has ΔIV < 0 while the 
subordinate has ΔIV > 0. Hence, ΔIV reduces species average differences; it acts as an equalizing 
mechanism. A similar argument holds for ΔJ owing to the similar mathematical structure and the fact that 
Var(C) > 0.  
 
The last case considered in the text is one of unequal vigor traits (EV1 ≠ EV2) but identical seed yield (y1 = 
y2 = y). Both storage effects contribute to stabilizing competition in this case. Relative nonlinearity is zero 
due to equal seed yield. Furthermore, species average fitness differences are  
 . (S63) 
Hence, species average fitness differences are proportional to species differences in predictive 
germination. These results are summarized in Table 3 of the main text. 
 

ΔIVi =
γ k

βk

Cov EVk ,C
{− i}( )− γ i

βi

Cov EVi ,C
{− i}( )

θV1 = θV2 = θV EV1 = EV2 = EV
κ1 −κ 2 = (1− β )Cov(EG1

− EG2
,EV )

κ i −κ k = ln yi − ln yk +
1
2

βk − βi( ) (1− s)
βiβk

Var(EG )+Var(EV )
⎡

⎣
⎢

⎤

⎦
⎥ +Cov (1− βi )EGi

− (1− βk )EGk
,EV( )

ΔIVi = βi − βk( )Cov EV ,C
{− i}( )

κ1 −κ 2 = (1− β ) Cov(EG1
,EV1 )−Cov(EG2

,EV2 )⎡⎣ ⎤⎦
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Quantifying stabilizing mechanisms and fitness inequalities 
To measure the strength of all stabilizing mechanisms, we take the average over both species of their 
invader growth rates, i.e., 1/2∑i=1,2 E[ri/βi]. This provides a measure of all stabilizing mechanisms because 
the average recovery rate can be written as 

   (S64) 
Equation (S64) shows that the sum of all community average mechanisms is given directly by the average 
of the growth rates of each species, when evaluated at low density. The amount to which a species 1’s 
recovery rate departs from this average value is  

   (S65) 

Note that  because  

   (S66) 
Define  as the difference of a species stabilizing mechanism from the community 
average. Rewritting (S65) using the identity (S66) and the definition δXj yields 

   (S67) 
where κj′ = κj + (δJj + δIGj + δIVj)/2. The κ′ values in (S67) are the modified species average fitness 
differences that account for asymmetrical effects of stabilizing mechanisms (Chesson 2018). A species 
average fitness can be calculated directly via the equation κj′ = r̅j/βj – A = r̅j/βj – (r̅1/β1 + r̅2/β2)/2, which 
only requires the calculation of invasion growth rates of both species. In addition, the species average 
fitness difference is κ1′ – κ2′ = r̅1/β1 – r̅2/β2. 
 
Stable coexistence occurs when both species have positive r̅i/βi > 0 for both species. From the last line of 
(S67), it follows that r̅1/β1 > 0 when A̅  > κ2′ – κ1′. The invasion condition for species 2 is r̅2/β2 > 0, which 
occurs when A̅  > κ1′ – κ2′. Putting these two conditions together yields the condition for stable 
coexistence, 
 .  (S68) 

1
2

r1
β1

+ r2
β2

⎛
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⎞
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= 1
2
κ1 −κ 2( )− 1

2
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Calculating invader growth rates from simulations 
The section directly above shows that total stabilizing mechanisms and species average fitness differences 
can be calculated directly from invader growth rates of species. To estimate these, we used the following 
process in simulations for 50,000 times steps in Matlab. 
 

1. Randomly sample T independent draws from a four-dimensional multivariate distribution with 
mean zero and variance matrix  

 . (S69) 

Σ satisfies the assumption in the main text for the vector of environmental variables (X1, X2, Z1, 
Z2). 

2. Transform the traits, (θG1, θG2, θV1, θV2), using the relationship ej1 = sin(θGj), ej2 = cos(θGj), vj1 = 
sin(θVj), and vj2 = cos(θVj).  

3. Using the transformed values in step 2, calculate environmental response, EG and EV, for each 
species using eqns (6) and (8) from the main text for the T values of the environmental factors 
sampled in step 1. 

4. Initiate the population of each species, Nj(0) with the density corresponding to the equilibrium 
population size in a constant environment,  

 , (S70) 

 where  = exp( )/(1+exp( )) and  = exp( ). 
5. Using eqns (1) – (3) in the main text, simulate population growth of each species assuming only 

one species is present, i.e., C′ = 1 + αGjVjNj for focal species j while retaining the T values of C′.  
6. For each species, calculate the invader growth rates after discarding the first 1000 time steps to 

get rid of effects on initial values. Using the values of C′ for the corresponding competing species 
as resident from step 5. This means that species 1’s invader growth rate is   

   (S71) 

 and species 2’s is 

 , (S72) 

 where  is given in equation (S30) above.  

Calculating selection gradients from simulations 
To calculate the selection gradient, we used the approximation 

 , (S73) 
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for small  ( ). The approximation is better for smaller differences between the resident 
and mutant phenotypes. We choose = 0.05 ≈ 0.016π. Each mutant-resident comparison 
represents approximately 0.8% of phenotype space. The mutant invader growth rate is calculated using 
the formula 

 ,  (S74) 

and the resident growth rate is calculated using the formula 

 . (S75) 

In both cases, we used values of N1(t) and N2(t) from stationary distributions of the two species when in 
competition with each other. That is to say that we simulated equations (1) – (3) in the main text for N1(0) 
> 0 and N2(0) > 0 for T time units. As in the calculations above, T = 50,000.  
 
Calculating the evolutionarily stable |θG1 – θG2|. 
We numerically calculated the ESS |θG1 – θG2| in figures 4-6 of the main text by simulating the adaptive 
dynamics process for alternating mutations in each species. Initial trait values for each species were set to 
θG1 = π/10 and θG2 = –π/10. Starting with these trait values, mutations alternated between species, creating 
mutant phenotypes that could invade the resident population. Mutant phenotypes are a random sample 
from a uniform distribution, θ′Gj ~ Uniform(θGj – 0.01, θGj + 0.01), meaning that resident and mutant 
phenotypes differ at most 0.01 units. When this mutation process led to  > π/2 or  < –π/2, meaning 
the phenotype lies outside our defined phenotype space, we set the mutant to the boundary phenotype  
= π/2 in the case of  > π/2 and  = –π/2 when  < –π/2.  
 
For each resident-mutant comparison, we calculated the mutant advantage, r̅j′ – r̅j, for species j subject to 
mutation, using equations (S74-S75) above. If r̅j′ > r̅j, we set the mutant as the new resident phenotype 
value. If r̅j′ ≤ r̅j, we assumed the mutant failed to invade and the resident phenotype was retained for the 
next mutation.  
 
We repeated these steps for 3500 mutations, corresponding to 1750 mutations for each species, and 
recorded the end trait values θG1 and θG2. We visually inspected that trait values had stabilized across a 
range of parameter values after the 3500 mutations. 3500 mutations were sufficient in all cases to reach 
evolutionary equilibrium. 
 

S7. Explanation for increasing coexistence mechanism strength with 
competition 
Factors affecting resource demand in the seed bank model 
An important factor in the model is the demand for resources as it controls the strength of density-
dependent selection that drives character displacement. We track the amount of resource demand using C′ 
= 1 + αG1V1N1 + αG2V2N2, which combines per-capita competitive effects of species (α) and biomass 
weighted population density in a year (GVN). Together, these two factors together give the total 
competitive effect in a year. A more direct measure of total competitive effect is given by a simple 
translation of C′ to C′ – 1 = αG1V1N1 + αG2V2N2, which measures total community biomass weighted by 
competitive effect. It is on a scale of [0,∞), where C′ – 1 = 0 means no plants and thus no demand for 
resources.  
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One question a reader might ask is why we have chosen to change the value of y to change the level of 
resource demand – which is conspicuously absent in C′ – rather than the competition coefficient α, which 
is present in C′? The answer to this question lies in the relationship between population density, N, and 
the competition coefficient, α. The two parameters act together as a composite parameter that is 
effectively constant with respect to changes in α. This is most easily illustrated in the constant 
environment version of the model for a single species. With a single species, we drop subscripts and take 
G(t) = g and V(t) = v for all t. The finite rate of increase is now 
 .  (S76) 

At equilibrium, λ = 1, and we have the following equality 

 ,  (S77) 

where the left-hand side is the equilibrium demand for resources (= C′eq – 1) and the right-hand side is a 
suite of parameters related to the demographic rates of the species (g, v, s, and y). As illustrated from this 
equation, the equilibrium demand for competition cannot change by changing only the parameter α. 
 
The same principle applies in a fluctuating environment. Figure S1 show the average value of C′(t) for 
different values of α and y for a single species and for two coexisting species. 
 

 
Figure S1. Values of average demand for resources, E[C′], for a single species (a) and two coexisting 
species (b) when G and V varies and y1 = y2 = y. Parameters: s = 0.9, =  = 0,  =  = 1, ρ = 
0.5, θG1 = 0.4π, θG2 = –0.4π, and θV1 = θV2 = 0. 
 
Understanding the size of the coexistence region and the intensity of competition 
In this model (and many others), the size of the coexistence region is larger for more intense competition. 
For example, the coexistence region is larger for larger values of y. The ecological justification for this 
result is as follows. Two species coexist when each species inhibits its own growth more than it inhibits 
the growth of a competitor (Chesson 2018). A common restatement is “intraspecific competition is 
greater than interspecific competition.” The strength of competition here plays an important role in the 
level of intraspecific limitation. When competition is strong, a species as resident is restricted by 
competition. If ecological differences reduce interspecific competition proportionately (as we will show 
they do here), species as invaders experience greater benefits at fixed ecological differences with greater 
intensity of competition (Chesson 1994, 2000, 2003, 2018). 
 
To illustrate this effect from Figure 3, consider the case of identical vigor responses (i.e., θV1 = θV2 and 
V1(t) = V2(t) = V(t) for all t) and symmetric competitors (y1 = y2 = y). In this case, the only coexistence 

λ(t) = s(1− g)+ yvg
1+αvgN(t)

vgαNeq =
yvg

1− s(1− g)
−1

µEG
µEV

σ EG
σ EV
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mechanism is the storage effect from germination (see Table 3). Hence, the low-density growth rate can 
be written as 

 . (S78) 

 From Table 2 of the main text, the expression for the storage effect from germination is  
   (S79) 
Using the first order approximation of C{–i} (S43) from above in (S79) yields the following expression 

 , (S80) 

where we have set pi
* = 0 since the invader species is at zero density and written the covariances in terms 

of their correlations, ρU,Z = corr(U,Z) for compactness in the final line. 
 
To relate (S80) to the size of the coexistence region, we take the community average because the 
community average is proportional to the size of the coexistence region (Chesson 2018). Hence, larger 
values of the community average indicate larger regions of trait space that allow for coexistence of 
species. The community average storage effect writes as 

 ,  (S81) 

where an overbar indicates an average over species as residents. The intensity of competition is in part 
determined by p̅*, which can be seen by the explicit formula for p* 

 . (S82) 

The bounds on these functions are 0 < pj
* < 1 and they are larger for species with greater resident 

population sizes. Hence, more abundant species have greater competitive effect, which we can control 
with y, as illustrated in SI S7 “Factors affecting resource demand in the seed bank model.” 
 
We simplify the problem a bit by noting that ρG2,V – ρG1,V ≈ 0 for species with similar absolute distances 
|θGi – θV|, in which case (S81) simplifies greatly to  
 .  (S83) 

Equation (S83) takes a form that is interpretable in terms of the intensity of competition. The first three 
terms together determine the effects of competition on resident species, on average. This amount is 
reduced for invaders by a factor , determined by species-specific germination responses (i.e., |θG1 – 
θG2|). Hence, for fixed ,  increases with increasing intensity of competition. Stated differently, 
the size of the coexistence region increases as the distribution of population densities of the resident is 
larger, all else equal. This is the situation in Figure 3 where y increases in each panel, increasing N for 
each point in each panel.  
 
In the section where we consider species with different vigor responses, we find that the size of the 
coexistence region—as measured by A̅—increases the most in sympatry when there is a strong cue. In this 
case, total stabilizing mechanisms for one species is the sum of storage effects from both germination and 
vigor: 
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 ,  (S84) 

where Ẽj = EGj + EVj is the total environmental response in a year and combines both germination and 
vigor. We can now understand the storage effect in terms of single environmental response that combines 
both germination and vigor. For symmetric competitors (which we have in Fig. 6), we expect (S84) to 
have the general form: 
  , (S85) 
where  = Var(Ẽ), ρẼ = Corr(Ẽj, Ẽi), and B is related to the average density of the residents (Chesson 
2003). The effect of the cue is present in the variance of the total environmental response because the 
expression for the variance of a sum is  

  . (S86) 

This makes clear that variances in total environmental responses in environments with stronger cues (ρ) 
provided the covariance between EG and EV is positive. The covariance is positive when germination is 
predictive, i.e., cos(θG – θV) > 0. In terms of trait differences, |θG – θV| < π/2. It appears that the 
evolutionarily stable θG correspond to predictive germination for both species in Fig. 6b for large values 
of ρ. We suspect increased variance in total environmental response under strong cues increases the 
magnitude of competition and elevates total stabilizing mechanisms. 
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